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The transition radiation emitted from a thin metal foil bombarded by electrons is calculat-
ed, taking into account the excitation of plasma waves in the foil. The correction the plasma
waves introduce varies greatly in different cases and can be of the order of 10% or greater
at the frequency at which the radiation has its peak intensity.

I. INTRODUCTION

Transition radiation is the radiation emitted
due to the passage of a charged particle through
an inhomogeneous medium, for example, as in
crossing the boundary between two media of dif-
ferent dielectric constants. This radiation, first
discussed by Frank and Ginzburg' in 1945, has
been the subject of increasing interest in recent
years.

The transition radiation is a consequence of the
boundary conditions appropriate to the given sit-
uation. To calculate the transition radiation, one
applies these conditions to the fields at the bound-
ary crossed by the particle, while the media on
either side of the boundary are described in some
suitable way.

Problems in electromagnetic theory involving
boundaries, such as transition radiation or the
derivation of Fresnel’s formulas, are usually
worked under the assumption that the media in
question are described by their dielectric con-
stants, permeabilities, or refractive indices.
Recently, Sauter? pointed out that this approach
failed to take into account the possibility of exci-
tation of plasma waves in the case of metals, so
that, for instance, there should be corrections to

Fresnel’s formula for the reflection coefficient of
a metal surface in certain circumstances.

It is of interest to consider what effect these
plasma waves would have on transition radiation,
since the targets usually used for experimental
investigations are thin foils of aluminum, silver,
or similar metals. Forstmann® has done such a
calculation for electrons incident (obliquely) from
vacuum on a semi-infinite metal. This paper re-
ports the calculations for a thin metallic film.

II. FUNDAMENTAL EQUATIONS

The equation of motion of a degenerate electron
gas in the metal is given by

> > -> e = > W2
v(r, t)+f\7(r,t)=—7~n E(r,t)—;; wn(,t) , (1)

where the constant W2=£v% for a completely de-
generate electron gas with a Fermi velocity vp.
Further, V is the velocity of an element of the
electron gas, ny is the equilibrium number density
of the electrons (and constant density of the posi-
tive ions), » is the deviation of the electron num-
ber density from ny, —e/m is the charge to mass
ratio of an electron, f is the inverse of the relax-
ation time of the electrons, and E is the total
¢<eiectric field inside the metal. Assume that »
Nge.
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The charge and current density of the plasma
are, respectively, p=—en and J3,= - e(ng+n)¥;
since ¥ is small, the second term will be neglected
in the current density. The equation of continuity
reads

neV-V=1 . (2)

The electromagnetic field, which governs the
motion of metallic electrons through (1), is in
turn determined through Maxwell’s equations by
the total charge density p=ren+p, and the total
current density J= —enuv +Jc, where p, and J
are densities of sources not belonging to the elec-
tronic plasma; in this problem, they will be the
densities appropriate to the incident charged par-
ticle. Maxwell’s equations are

vxE=-(1/c)H, 3)
UxT=(1/c) B+ (dn/c)(~eng¥ +3,) , @)
V"E.=47T(—en+pc) " (5)
v-H=0 . (6)

Now everything is Fourier-analyzed in time ac-
cording to

ft)=(@m12 [ flw)e “tdw

The same symbol is used for both the original
function and its Fourier transform.
Applying V- to (1) yields

~i0V V= —(e/m) V-E - (W¥/ng) Von , )
where @=w +if. Substituting (2) and (5) into (7)
gives

v+ (w¥/c? €'n= - (wWi/eW?)p, , (8)

where €’ = (c2/W?) (0 /w) €, €=1-w?/wb, and W}
=4me’ny/m. w, is then the plasma frequency.
From (1), (3), and (4), we obtain

V2H + (0¥/c?) el = - (4n/c) vXT, . (9)

Other necessary quantities can be calculated once
n and H are found. Manipulation using (1) and

(4) gives
> ¢ 1 - .C 4 1 =
E=i~ eV><H zann - eJ s (10)
- ¢ €-1 - C -1 =
Jo=gr —o VXH 4o nvn -< — Jo, (D)

where the abbreviation 7= 4nieW?/éc® is used.
The problem thus takes the form of a set of
coupled differential equations, which are to be
solved given the source terms p, and J, and the
boundary conditions. One bou_lgdary condition is
that the normal component of J , must vanish at
the surfaces of the foil, since the plasma elec-
trons cannot leave the metal. Other boundary
conditions follow in the well-known way from

Maxwell’s equations; these arethat £ and H be
continuous at both boundaries. Of course, not all
these conditions are independent. For instance
the continuity of the normal component of E fol-
lows from the tangential continuity of H and the
vanishing of the normal component of J,,

III. RESULTS

Let an electron be normally incident upon a
metal foil of thickness d bounded by vacuum on
both sides. The parallel planes of the foil are
located at 2=0 and 2=d. The direction of the
electron’s flight is taken as the z axis. Letu
=(0, 0,u) be the electron’s velocity.

The Fourier-transform method is used to solve
the equations. The transform taken is

Fie,y,z,0)=@n" [ ae, [ " dk,
Xf(Byy by, 2, w) exp ik, x +Ryy)]
The external sources are p,= - ed(f —1¢) and J,
= —eud(T —Ut), whose transforms are
po=—(2m-3/2(e/u) ™

0
J.= -e(21r)'3/2( 0) e'® |

where K=w/u. 1
Equations (8) and (9) are now ordinary differen-
tial equations. The solution of (8) is
n=N,e'V?+N_& P Ny | (12)
where U?=(w?/c?) €’ —«?, k®=k% +kZ, ImU>0,
N0= (21,.)-8 /2 wﬁ/qu(KZ - UZ) .

N, and N. are to be determined from the boundary
conditions. In the same way, the magnetic field
inside the metal is

H=h,e+h e ™1 hye™ (0<z<d), (13)

where VZ=(w?/c¥e —k?, ImV>0,

-k
- C y 2\1/2 e
h°=K2-VZ(k") » €= (F) ic *
0

In writing the solutions to (9) in free space, one
must keep in mind that only waves outgoing from
the metal are acceptable, that is, solutions corre-
sponding to waves traveling in the positive (nega-
tive) z direction in the region z <0(z >d). The
solutions are then |

H=h'e-"'*+hse® |

H=h""e *+he™
where V'2 =w?/c? - k% and the real parts of V and
V'’ have the same sign. It is easy to see that this

sign is the same as that of w, so that the solu-
tions indeed represent waves traveling in the cor-

(z <0) (14)
(z >d) (15)
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rect directions. It also can be easily shown that
Fourier components for which w?/c? - k%<0 con-
tribute nothing to the energy flux, using the re-
quirement that the fields must be real. Thus, V'
can always be taken as purely real. Furthermore,
we find that
- c ~ky
ho=pr—vr | ks )
0

The boundary conditions now allow the determi-
nation of the unknown coefficients in Eqs. (12)-
(15). This determination is to be carried out for
given values of the Fourier variables &, and &,.
It will be found convenient to choose a new set of
coordinate axes such that k,=0, that is, to choose
the new x axis (to be called the ! axis) to have the
same direction as the tangential component of the
wave vector. The new y axis will be called the
m axis. It is understood that the point at which
the particle enters the metal is the origin of co-
ordinates. It will be useful later on if the original
set of coordinate axes are defined by running the
x axis through the point of observation. Let the
angle between the / and x axes be denoted by ¢.

From the continuity of H across the boundaries
and the vanishing of its divergence, it is now easy
to show that the 7 and z components of ©i’ and 7"’
vanish. This will turn out to lead to an important
result — the complete polarization of the transi-
tion radiation for normal incidence of the charged
particle. The vanishing of the z component of the
plasma current and the continuity of the I com-
ponent of the electric field at both boundaries are
then sufficient to evaluate the m components of
7’ and h”.

We obtain the following results for the Fourier
components of the radiation fields:

A,A-AA AyAg—A A -
’_ 2417 146 r_ 2416 1427 -iv'd
Gy L Sy

where A;=A;-Ap+Ap, Ag=A;+A,+Ad ,
and b=eiwl/v | ,

K* €-1

U TCOtUd s

Ay=—(i/€) [VeseVd - (k¥/U)(e - 1) cscUd] ,

A-K(_l__li_ﬁ_l_
""\D, e D, € D,)’

A= V’+-z; VeotVd —i

A,=—ik (F cotVd - G cotUd)
As=ik (FescVd -G escld)

_€-1 U % 1 1 1 1
" <D;*U 1>’ F‘e"(DT‘D?)’

The right-hand term in each A; gives the correc-
tion to the result caused by taking into account
the longitudinal oscillation in the metal.

To find the polarization of the radiation, we in-
vert the Fourier transform to find the x and y
components of the magnetic vector. Recalling
how we defined our coordinates, we have

H,=2m)22 [ [ [ n! sing
Xexpli(k,x +k,y = V'z —wt)]dk,dk,dw

=(2m-*2 [ [ [ n!,sing
X expli(kx cosg = V'z — wit)] k dk do dw
=0

on carrying out the ¢ integration. However, H,
does not vanish. These results are true for the
fields on both sides of the plate. Thus we have
obtained the result mentioned earlier — the com-
plete polarization of the transition radiation in the
plane containing the line of incidence and the ob-
servation ray (i.e., with the E vector in that plane
-E,#0, E,=0).

The remaining integration is carried out by the
saddle-point method. Let 6 be the angle between
the electron’s path and the observation ray. Then
the result is that the energy per unit solid angle
per unit frequency interval is
2

1 e?cos®d
dQdw - ,nzc A ’ (16)
where A=(aya; —ajaq)/(@é-a?) for z<0 ,

A=(ayag—ajaq)/(ak-a?) for z>d ,
ag=as—azb+ap, ag=az+a,+ash ,

€-1

¢ : s? ,
ay=v+io cotid - i ra cott'd ,

1 s?
?-csct'd> ,

— ﬁ—l __1__._1__ _E___l .l)
GBESPN G Ted, € &)

a,=—1is(f cottd — g cott'd) ,

€ -

a2=i<—€£ csctd +

as=is (f csctd —~g csct’d)
€ =e(@/w) (c?/W?), »=(w/c)cosh ,
s=(w/c)sind, B=(u/c) ,
tlor t')=(w/c)[€ (or €’) —sin®6]*/% ,
dy=(w/c) (B2 - cos?0) ,

dy (or dj)=(w/c)[B~% —€ (or €')+sin%0] ,

f_z(l__l_) s:l(Li_)
“e\q T a, ) 87 \(dtig
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Again, the right-hand term in each a,-a; gives
the correction caused by taking into account the
longitudinal plasma waves. It is easy to see that
if W? goes to zero, which means no longitudinal
waves, all these terms vanish. In this case, our
result reduces to that given by Garibyan and
Chalikyan* and by Ritchie and Eldridge® for the
transition radiation from a thin foil due to normal-
ly incident electrons. In these papers the foil

is described by a dielectric constant €(w). Our

€ becomes the dielectric constant, whose mean-
ing is given by the constitutive relation D= €_E.,

in the limit where the plasma effect is ignored.
Actually, the two papers cited do not specify the
frequency dependence of €(w).

In certain cases there will be Cherenkov radi-
ation. In deforming the path of integration from
the real k axis to the line of steepest descent
through the saddle point [which turns out to occur
at ko=(w/c)sind], we will cross a pole of the in-
tegrand under certain circumstances. The res-
idue at this pole will then contribute to the inte-
gral; it will turn out that this term gives the
Cherenkov radiation. The pole will occur for «
such that A,=+A,. If we are interested in thin
foils for which the electron travels only a very
small distance in the metal, the Cherenkov radi-
ation may be ignored.

Let us now compare the result (16) to the re-
sults of the old theory* 5 which did not take into
account the plasma effect. First, it should be
noted that Silin and Fetisov® have already given a
formula for the transition radiation yield from a
metal slab taking into account the possibility of
propagation of longitudinal waves in the medium.
From this formula, they estimate that considera-
tion of the longitudinal waves will not lead to very
great changes in the predicted transition radiation
yield as compared to formulas, assuming that
only transverse waves can propagate in the me-
dium; the corrections might be about 1%.

Their method involves taking spatial dispersion
into account. To compare this method to that of
the present paper, write

D=E+i (411/@))3p .

Now if there are no external sources, it is very
easy to show (by taking Fourier transforms in an
infinite medium) that

D;=[ed;; — (W?/wl) kik;] E;

The term in brackets can be broken up into trans-
verse and longitudinal components in the usual
way:

D;=[€T(6;;~k;k; k%) + € Rk ,;/RP E; |

from which

=¢, f=e-Wlk,k;/0d ,

which corresponds to the spatial dispersion of the
dielectric permeability assumed by Silin and
Fetisov, where W? is equal to their a.

Now if we assume that the incident particle is
nonrelativistic and the dielectric permeability is
not too large (so that, for example, terms in B2
can still be neglected compared to terms in B),
we can examine (16) in this approximation, which
is the same as that made in Ref. 6. With this
approximation Eq. (16) gives the same result as
Eq. (5) of Ref. 6, with the exception of the coef-
ficients of terms involving 1/¢'. This is to be ex-
pected since these coefficieats are modified by
changes in the boundary conditions; in Ref. 6 the
normal component of the field of radiation going
inside the metal vanishes on the surface, where-
as in the present paper it is the normal component
of the plasma current which must vanish on the
surface. Nevertheless, the order of magnitude
does not change.

The approximation of (16) to the formula from
which Silin and Fetisov estimated the longitudi-
nal-wave corrections to be insignificant would
seem to be predictable if one considers the mag-
nitudes of the various terms in (16). If € (and
therefore t) are of order 1, then €’ is of order
10° and #' is of order 10%. Thus, the right-hand
terms in a,-a;, which give the corrections, seem
to be of order 1072 compared to the other terms
and so can be neglected.

Yet these approximations are misleading. For
example, consider a very thick foil. In the limit
in which d becomes infinite, it is easy to see that
dI is proportional to

dwdd | (1 —p2+pt)/(1+Bt)(1 - B? cos®0)
+(1/80)[1/(1+8t) - (1 = BA/(1 - B cos?0)]| .

The left-hand term is of order 1; the right-hand
term is the correction term. If we assume |t'l
=100 and B=% (corresponding to 16-keV electrons),
then we have approximately dI~|1+0.04|% or a
correction of about 8%. This correction can, of
course, be considerably greater; Forstmann,®
using values for sodium (giving |#' |~ 23) and B
=3, obtained a 28% correction. (The thick-foil
limit is not essential in showing a relatively large
correction; it is merely an aid in making an es-
timate. )

To compare formula (16) to previous theories
without longitudinal-wave corrections,* ° it is
best simply to compute the numerical values
given by the two formulas for particular values
of the parameters. To give an example, consider
a hypothetical metal whose Fermi velocity is
0.01 of that of light and for which A, = 2000 A and
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FIG. 1. Percent change in predicted intensity of
transition radiation per unit solid angle per unit wave-
length interval due to longitudinal waves in target.
Curves are drawn for silver foils bombarded by 30-keV
electrons at normal incidence; direction of observation
makes an angle of 45° with direction of incidence. (a)
Foil thickness d=100 A; note the fine structure at high
frequencies. (b) Solid line is for d=300 A; broken line
is for d=500 A.

A;=50000 A, where ), =2mcw;, A, =2mcf'. Sup-

pose a 30-keV electron (8=0.33) impinges on a
foil of this material and the resulting radiation is
observed at an angle #=30° in the region z >d.

| D9

As is well known, *° the intensity of the transi-
tion radiation has a sharp peak at the plasma
frequency, If the foil is 100 A thick, there is a
decrease in specific intensity at the peak of 18%
(expressed as a percentage of the intensity pre-
dicted by the theory without plasma corrections)
due to the corrections. At 200-A thickness, the
correction at the peak is very small; whereas at
300 A the intensity should increase by 7% and at
500 Aby 30%. These values vary greatly with
changes in the parameters. For example, if the
velocity of the electron is 8=0.25 (energy about
16 keV), the computation for the 500-A case pre-
dicts a very large gain at the peak of about 280%.
In this connection it is instructive to consider the
cotangent and cosecant terms in (16).

The figure shows plots of the percent change in
specific intensity versus wavelength for a materi-
al for which 1,=3280 A, A,=49560 A, and the
Fermi velocity is 0.0047 of that of light, bom-
barded by 30-keV electrons. These constants
have been chosen since they are roughly similar
to those of real metals used for experimental
work in this field, and should therefore give a
good idea of the effect of the correction terms.
The results are for observations in the region
z>d.

It is interesting that the percent change for the
100-A foil shows a fine structure at frequencies
higher than w,. Similar fine structure is always
predicted in a calculation of the longitudinal-wave
corrections whenever the foil is very thin. It is
interesting that Shieh and Ritchie, 7 applying the
hydrodynamical approach to foils bombarded not
by particles but by electromagnetic waves, found
the same sort of fine structure due to the plasma
corrections in Fresnel’s formulas. However, in
the transition-radiation case where the intensity
falls off rapidly away from the plasma-frequency
peak, it seems unlikely that the fine structure
can be observed.

*Work based on part of a dissertation submitted to
Lehigh University in partial fulfillment of the require-
ments for a Ph.D. degree.
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